首页> 外文OA文献 >More than six hundreds new families of Newtonian periodic planar collisionless three-body orbits
【2h】

More than six hundreds new families of Newtonian periodic planar collisionless three-body orbits

机译:超过六百个新的牛顿周期平面族   无碰撞的三体轨道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The famous three-body problem can be traced back to Isaac Newton in 1680s. Inthe 300 years since this "three-body problem" was first recognized, only threefamilies of periodic solutions had been found, until 2013 when \v{S}uvakov andDmitra\v{s}inovi\'c [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthroughto numerically find 13 new distinct periodic orbits, which belong to 11 newfamilies of Newtonian planar three-body problem with equal mass and zeroangular momentum. In this paper, we numerically obtain 695 families ofNewtonian periodic planar collisionless orbits of three-body system with equalmass and zero angular momentum in case of initial conditions with isoscelescollinear configuration, including the well-known Figure-eight family found byMoore in 1993, the 11 families found by \v{S}uvakov and Dmitra\v{s}inovi\'c in2013, and more than 600 new families that have been never reported, to the bestof our knowledge. With the definition of the average period $\bar{T} = T/L_f$,where $L_f$ is the length of the so-called "free group element", these 695families suggest that there should exist the quasi Kepler's third law $\bar{T}^* \approx 2.433 \pm 0.075$ for the considered case, where $\bar{T}^*=\bar{T} |E|^{3/2}$ is the scale-invariant average period and $E$ is its totalkinetic and potential energy, respectively. The movies of these 695 periodicorbits in the real space and the corresponding close curves on the "shapesphere" can be found via the website:http://numericaltank.sjtu.edu.cn/three-body/three-body.htm
机译:著名的三体问题可以追溯到1680年代的艾萨克·牛顿。自从首次认识到“三体问题”以来的300年来,只发现了三个周期解的族,直到2013年\ v {S} uvakov和Dmitra \ v {s} inovi'c [Phys。牧师110,114301(2013)]取得了突破,在数值上找到了13个新的不同周期轨道,它们属于质量相等且角动量为零的牛顿平面三体问题的11个新族。在本文中,我们通过数值方法获得了695个三体系统的牛顿周期平面无碰撞轨道,该系统在等腰共线配置的初始条件下具有等质量和零角动量,其中包括摩尔在1993年发现的著名的图八族,其中11个据我们所知,\ v {S} uvakov和Dmitra \ v {s} inovic在2013年发现了一些新的家庭,还有600多个从未报告过的新家庭。用平均周期$ \ bar {T} = T / L_f $的定义,其中$ L_f $是所谓的“自由群元素”的长度,这695个族表明应该存在准开普勒第三定律$ \ bar {T} ^ * \约2.433 \ pm 0.075 $(对于所考虑的情况),其中$ \ bar {T} ^ * = \ bar {T} | E | ^ {3/2} $是尺度不变的平均值周期和$ E $分别是其总动能和势能。可以通过以下网站找到真实空间中这695个周期轨道的电影以及“ shapesphere”上相应的闭合曲线:http://numericaltank.sjtu.edu.cn/three-body/three-body.htm

著录项

  • 作者

    Li, Xiaoming; Liao, Shijun;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号