The famous three-body problem can be traced back to Isaac Newton in 1680s. Inthe 300 years since this "three-body problem" was first recognized, only threefamilies of periodic solutions had been found, until 2013 when \v{S}uvakov andDmitra\v{s}inovi\'c [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthroughto numerically find 13 new distinct periodic orbits, which belong to 11 newfamilies of Newtonian planar three-body problem with equal mass and zeroangular momentum. In this paper, we numerically obtain 695 families ofNewtonian periodic planar collisionless orbits of three-body system with equalmass and zero angular momentum in case of initial conditions with isoscelescollinear configuration, including the well-known Figure-eight family found byMoore in 1993, the 11 families found by \v{S}uvakov and Dmitra\v{s}inovi\'c in2013, and more than 600 new families that have been never reported, to the bestof our knowledge. With the definition of the average period $\bar{T} = T/L_f$,where $L_f$ is the length of the so-called "free group element", these 695families suggest that there should exist the quasi Kepler's third law $\bar{T}^* \approx 2.433 \pm 0.075$ for the considered case, where $\bar{T}^*=\bar{T} |E|^{3/2}$ is the scale-invariant average period and $E$ is its totalkinetic and potential energy, respectively. The movies of these 695 periodicorbits in the real space and the corresponding close curves on the "shapesphere" can be found via the website:http://numericaltank.sjtu.edu.cn/three-body/three-body.htm
展开▼
机译:著名的三体问题可以追溯到1680年代的艾萨克·牛顿。自从首次认识到“三体问题”以来的300年来,只发现了三个周期解的族,直到2013年\ v {S} uvakov和Dmitra \ v {s} inovi'c [Phys。牧师110,114301(2013)]取得了突破,在数值上找到了13个新的不同周期轨道,它们属于质量相等且角动量为零的牛顿平面三体问题的11个新族。在本文中,我们通过数值方法获得了695个三体系统的牛顿周期平面无碰撞轨道,该系统在等腰共线配置的初始条件下具有等质量和零角动量,其中包括摩尔在1993年发现的著名的图八族,其中11个据我们所知,\ v {S} uvakov和Dmitra \ v {s} inovic在2013年发现了一些新的家庭,还有600多个从未报告过的新家庭。用平均周期$ \ bar {T} = T / L_f $的定义,其中$ L_f $是所谓的“自由群元素”的长度,这695个族表明应该存在准开普勒第三定律$ \ bar {T} ^ * \约2.433 \ pm 0.075 $(对于所考虑的情况),其中$ \ bar {T} ^ * = \ bar {T} | E | ^ {3/2} $是尺度不变的平均值周期和$ E $分别是其总动能和势能。可以通过以下网站找到真实空间中这695个周期轨道的电影以及“ shapesphere”上相应的闭合曲线:http://numericaltank.sjtu.edu.cn/three-body/three-body.htm
展开▼